首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3143篇
  免费   694篇
  国内免费   363篇
  2024年   7篇
  2023年   146篇
  2022年   82篇
  2021年   178篇
  2020年   262篇
  2019年   295篇
  2018年   218篇
  2017年   240篇
  2016年   231篇
  2015年   202篇
  2014年   280篇
  2013年   270篇
  2012年   200篇
  2011年   203篇
  2010年   134篇
  2009年   188篇
  2008年   157篇
  2007年   156篇
  2006年   109篇
  2005年   81篇
  2004年   81篇
  2003年   62篇
  2002年   56篇
  2001年   45篇
  2000年   37篇
  1999年   35篇
  1998年   27篇
  1997年   33篇
  1996年   24篇
  1995年   25篇
  1994年   23篇
  1993年   12篇
  1992年   15篇
  1991年   15篇
  1990年   11篇
  1989年   11篇
  1988年   7篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
排序方式: 共有4200条查询结果,搜索用时 15 毫秒
21.
22.
Long‐distance migration in birds is relatively well studied in nature; however, one aspect of this phenomenon that remains poorly understood is the pattern of distribution presented by species during arrival to and establishment of wintering areas. Some studies suggest that the selection of areas in winter is somehow determined by climate, given its influence on both the distribution of bird species and their resources. We analyzed whether different migrant passerine species of North America present climatic preferences during arrival to and departure from their wintering areas. We used ecological niche modeling to generate monthly potential climatic distributions for 13 migratory bird species during the winter season by combining the locations recorded per month with four environmental layers. We calculated monthly coefficients of climate variation and then compared two GLM (generalized linear models), evaluated with the AIC (Akaike information criterion), to describe how these coefficients varied over the course of the season, as a measure of the patterns of establishment in the wintering areas. For 11 species, the sites show nonlinear patterns of variation in climatic preferences, with low coefficients of variation at the beginning and end of the season and higher values found in the intermediate months. The remaining two species analyzed showed a different climatic pattern of selective establishment of wintering areas, probably due to taxonomic discrepancy, which would affect their modeled winter distribution. Patterns of establishment of wintering areas in the species showed a climatic preference at the macroscale, suggesting that individuals of several species actively select wintering areas that meet specific climatic conditions. This probably gives them an advantage over the winter and during the return to breeding areas. As these areas become full of migrants, alternative suboptimal sites are occupied. Nonrandom winter area selection may also have consequences for the conservation of migratory bird species, particularly under a scenario of climate change.  相似文献   
23.
Closely related living mammal species present numerous difficulties of recognition and delineation, not least because populations as well as individual organisms fulfill both genetic and economic functions. However, since species are often distributed geographically across multiple ecosystems or environments, it is evident that species as wholes, except where coterminous with the local populations of which they are composed, cannot be said to play unitary ecological roles. Aspects of the economic activity of organisms thus may not be admitted as elements in species recognition. Those who study the behavior of mammals in their natural habitats must therefore focus upon behaviors which preserve the genetic integrity of species if they wish to contribute to the systematic question of species identification. «Isolation» concepts of species are not served by data of this kind, since they emphasize interspecies discontinuities; the «recognition» concept of species, however, specifically focuses upon behaviors of this kind as they contribute to the «Specific-Mate Recognition System». Among primates such behaviors are likely to involve signalling of various kinds; where this is visual it is reasonable to expect to find morphological or chromatic correlates; where such cues are auditory or, to a lesser extent, olfactory, it is less probable that such correlates will be found to exist.  相似文献   
24.
Theory and empirical evidence show that intraspecific competition can drive selection favouring the use of novel resources (i.e. niche expansion). The evolutionary response to such selection depends on genetic variation for resource use. However, while genetic variation might facilitate niche expansion, genetically diverse groups may also experience weaker competition, reducing density-dependent selection on resource use. Therefore, genetic variation for fitness on different resources could directly facilitate, or indirectly retard, niche expansion. To test these alternatives, we factorially manipulated both the degree of genetic variation and population density in flour beetles (Tribolium castaneum) exposed to both novel and familiar food resources. Using stable carbon isotope analysis, we measured temporal change and individual variation in beetle diet across eight generations. Intraspecific competition and genetic variation acted on different components of niche evolution: competition facilitated niche expansion, while genetic variation increased individual variation in niche use. In addition, genetic variation and competition together facilitated niche expansion, but all these impacts were temporally variable. Thus, we show that the interaction between genetic variation and competition can also determine niche evolution at different time scales.  相似文献   
25.
Most of the classical theory on species coexistence has been based on species‐level competitive trade‐offs. However, it is becoming apparent that plant species display high levels of trait plasticity. The implications of this plasticity are almost completely unknown for most coexistence theory. Here, we model a competition–colonisation trade‐off and incorporate trait plasticity to evaluate its effects on coexistence. Our simulations show that the classic competition–colonisation trade‐off is highly sensitive to environmental circumstances, and coexistence only occurs in narrow ranges of conditions. The inclusion of plasticity, which allows shifts in competitive hierarchies across the landscape, leads to coexistence across a much broader range of competitive and environmental conditions including disturbance levels, the magnitude of competitive differences between species, and landscape spatial patterning. Plasticity also increases the number of species that persist in simulations of multispecies assemblages. Plasticity may generally increase the robustness of coexistence mechanisms and be an important component of scaling coexistence theory to higher diversity communities.  相似文献   
26.
Aim  To develop a physiologically based model of the plant niche for use in species distribution modelling. Location  Europe. Methods  We link the Thornley transport resistance (TTR) model with functions which describe how the TTR’s model parameters are influenced by abiotic environmental factors. The TTR model considers how carbon and nutrient uptake, and the allocation of these assimilates, influence growth. We use indirect statistical methods to estimate the model parameters from a high resolution data set on tree distribution for 22 European tree species. Results  We infer, from distribution data and abiotic forcing data, the physiological niche dimensions of 22 European tree species. We found that the model fits were reasonable (AUC: 0.79–0.964). The projected distributions were characterized by a false positive rate of 0.19 and a false negative rate 0.12. The fitted models are used to generate projections of the environmental factors that limit the range boundaries of the study species. Main conclusions  We show that physiological models can be used to derive physiological niche dimensions from species distribution data. Future work should focus on including prior information on physiological rates into the parameter estimation process. Application of the TTR model to species distribution modelling suggests new avenues for establishing explicit links between distribution and physiology, and for generating hypotheses about how ecophysiological processes influence the distribution of plants.  相似文献   
27.
28.
29.
Aim In aquatic ecosystems, standing (lentic) and running (lotic) waters differ fundamentally in their stability and persistence, shaping the comparative population genetic structure, geographical range size and speciation rates of lentic versus lotic lineages. While the drivers of this pattern remain incompletely understood, the suite of traits making up the ability of a species to establish new populations is instrumental in determining such differences. Here we explore the degree to which the association between habitat type and geographical range size results from differences in dispersal ability or fundamental niche breadth in the members of the Enochrus bicolor complex, an aquatic beetle clade with species across the lentic–lotic divide. Location Western Mediterranean, with a special focus on North Africa, the Iberian Peninsula and Sicily. Methods DNA sequences for four loci were obtained from species of the E. bicolor complex and analysed using phylogenetic inference. Dispersal and establishment abilities were assessed in lentic–lotic species pairs of the complex, using flight wing morphometrics and thermal tolerance ranges as surrogates, respectively. Results There were clear differences in range size between the lotic and lentic taxa of the complex, which appears to have had a lotic origin with two transitions to standing waters. Only small differences were observed in temperature tolerance and acclimation ability between the two lotic–lentic sister species studied. By contrast, wing morphometrics revealed clear, consistent differences between lotic and lentic Enochrus species pairs, the latter having a higher dispersal capacity. Main conclusions We hypothesize that there have been two habitat shifts from lotic to lentic waters, which have allowed marked expansions in geographical range size in western Mediterranean species of the E. bicolor complex. Differences in dispersal rather than in establishment ability appear to underlie differences in geographical range extent, as transitions to lentic waters were associated with changes in wing morphology, but not in thermal tolerance range. In this lineage of water beetles, selection for dispersal in geologically short‐lived lentic systems has driven the evolution of larger range sizes in lentic taxa compared with those of their lotic relatives.  相似文献   
30.
The replacement series   总被引:15,自引:0,他引:15  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号